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Abstract—A transient 3D study of surface (Rayleigh) and interface (Stoneley) signals in fully-
coupled thermolastic solids begins by obtaining analytical expressions for the zeroes of the cor-
responding Rayleigh/Stoneley functions that arise in the integral transforms of the solutions. The
expressions locate the zeroes as functions of the temporal transform variable in a complex plane
defined by a scalar resultant of spatial transform variables.

Expressions for the change in surface temperature caused by the Rayleigh signal are then
derived for cases of normal traction surface loading. By using long-time asymptotic results, the
expressions can be obtained analytically, and they show that Rayleigh/Stoneley signal-induced
thermal effects can be important.

The long-time asymptotic results also show that Rayleigh/Stoneley zeroes reduce to the ther-
mally-modified inverses of the classical (non-thermal) Rayleigh/Stoneley wave speeds. This result
agrees with 2D predictions that can be made on the basis of low-frequency asymptotic harmonic
wave studies. The long-time results are not restrictive, because time is scaled by a small, i.e.,
O(10™*)um, thermoelastic characteristic length. © 1997 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Surface (Lamb, 1904) and interface (Stoneley, 1924) waves are important phenomena in
elastic materials. Such waves may dominate surface/interface response (Achenbach, 1973 ;
Miklowitz, 1978) and their speeds may characterize limiting propagation rates for cracks
(Freund, 1990; Liu et al., 1995). Moreover, surface wave arrivals at crack edges may cause
an instantaneous transition of the stress intensity factor to a static value (Freund, 1974;
Brock, 1982a).

Surface/interface phenomena can also occur for fully-coupled thermoelastic solids.
They may be somewhat different because, unless the standard Fourier heat flow law is
modified (Joseph and Preziosi, 1989) only one classical body wave—the rotational wave—
occurs in an isotropic material. Nevertheless, signals analogous to Rayleigh (surface) waves
have been studied in the frequency domain (Chadwick, 1960 ; Nowinski, 1978) and found
for low frequencies to behave like classical Rayleigh waves traveling at modified speeds.

Recently (Brock, 1995), transient 2D studies were made of Rayleigh signals in a
thermoelastic half-plane and Stoneley (interface) signals in two rigidly-joined thermoelastic
half-planes. Particular attention was paid to the zeroes of the associated Rayleigh/Stoneley
functions in the solution integral transform space, following the model of Cagniard’s (1962)
work on classical (non-thermal) Stoneley waves. No appeal to asymptotics was made, and
analytic expressions for the zeroes in terms of the temporal transform variable were
obtained. The zeroes were then examined for long-time behavior and found to reduce to the
inverse of thermally-modified Rayleigh/Stoneley speeds, c.f. (Chadwick, 1960 ; Nowinski,
1978). The long-time results were, however, robust because time was scaled by an extremely
small thermoelastic characteristic length.

The present study extends this work by first considering the 3D transient situation for
fully-coupled thermoelastic half-spaces. Both mechanical and thermal surface/interface
conditions are imposed. Then, the effects of surface/interface signal response are illustrated
for Rayleigh signal examples in terms of the long-time surface temperature changes associ-
ated with the signals. The study begins in the next section with the 3D Rayleigh signal
problem formulation.
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1464 L. M. Brock
RAYLEIGH SIGNAL PROBLEM: FORMULATION

Consider the half-space defined in terms of Cartesian coordinates x =(x, y,z) and
corresponding basis vectors (i, j, k) as the region z > 0. For time ¢ < 0 the half-space is at
rest at a uniform temperature 7,(K). For ¢ > 0 the half-space surface is subjected to normal
and shear tractions and to a specified heat flux. The governing equations for a linearly
thermoelastic, isotropic solid can, after Chadwick (1960), be written as
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for z > 0, ¢ > 0. Here u(x, 1) = (u,, 4,,u,) is the displacement vector, ¢ is the stress tensor,
w(x, ?) is the change in temperature from 7,, A is the dilatation and () denotes ¢-differ-
entiation. The constants (i, v, p, k,, k, ¢,) are, respectively, the shear modulus, Poisson’s
ratio, mass density, coefficient of thermal expansion, conductivity and specific heat. For
z>0,t<0wehave

uw=0 2

while for z = 0, ¢ > 0 the conditions

o'k =(z,,1,,0), i F (3a,b)

hold, where (1,,1,, 0, F) are piecewise continuous functions of (p, #) and bounded in p for
finite # > 0, where p = (x, ,0). In addition, (u, w) are bounded in x for finite > 0 and

continuous in (x, ).
To solve the problem (1)-(5), the constants

1 U 1 1—v
v,-;- ;, vd—;—mv,, m= /21—2v (4a)

K, \?
h= "2 e=~<m), K = K, (4—3m?) < 0 (4b)

are introduced, where (v,,v,) are the classical rotational and dilatational waves speeds,
(b, a) are the corresponding slownesses, 4 is a thermoelastic characteristic length and ¢ is
dimensionless. A classical dialational wave may not actually arise in the coupled ther-
moelastic solid, but both wave speeds and their dimensionless ratio m enter into the problem
formulation. The length 4 is generally of order O(10~%)um (Brock, 1992) while the so-
called coupling constant ¢ is of order O(10~?) (Chadwick, 1960). Substitution of (6) and
(7) into (1)—(3) gives the more compact forms

Via+(m? —1)VA+xVo—bi =0 (5a)
h %e .
“Vio—dt+ A =0 (5b)
a K

1
;o- = [(m* —2)A+kw]I+Vu+uV. (5¢)
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The system (2)—(5) can be addressed by employing the unilateral (Sneddon, 1972) and
bilateral (van der Pol and Bremmer, 1950) Laplace transforms

f‘= wa(t) e—si dt, f* - jjf(x) e’S(P'I’) dx dy (63, b)

p=(p,q,0) (6¢)

over the temporal and spatial variables # and p. In (6) s can be taken to be real and
positive, while p is, in general, complex, and integration in (6b) is over the entire xy-plane.
Application of (6a, b) to (5) gives in view of (2) the transform solution

ot i a0 o] [Aee
sut - -p f 0| A" ;
s =y —¢ o B LB, e~ (72)
| suf to, o Etp X¢q 1B, e #
[o% [ =29 =2p9 4B  PB 7 e
ok +2pa, +2px_ FT, tpq | [+
of | _ | +2qu, £2qu. tpg FT, | |4- . (7b)
¥ | s T, T, 2pp 0 ;I,Bx e
oy T,. T, 0 2P %By g~ hll
L g¥ ] L —T -T  =2pf —2gp.

bounded for z > 0(+) and z < 0(—). Here 4. and B =(B,, B,, 0) are arbitrary functions
of (s,p) and

a, =JBL—r, B=. b =1, T=b-2% T, =204} (82)

T'p = T+p2’ Tq = T+q2a Tpi = Tt +2p2’ Tqi = Tt+2qz (8b)
b, =mya, kl.=bM, (8¢c)

1V ¢ 1YV ¢ €

M, =m:—1 = —) 42+ [[1-—=) += =
L =mi—~1, 2m, \/<1+\/;) +T_\/<1 \/;) +5 MM = - (8

where

r=p'p=+p*+q*, 1=ahs )

are dimensionless transform variables. Dependence on the scalar resultant r, not p itself,
allow (a4, ) to be viewed as functions in complex r-planes. Then, boundedness requires
that Re(a., f) = 0in planes cut along Im(r) = 0, | Re(r) | > (b, b), respectively, and it can
be shown that

me>1>m_(b, >a>b_), 1>0 (10a)
21 -1

m, > mb, >b), 0<t<t,; 1,=mdrO=1 (10b)
m*(m*—1)

and, therefore, that
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M,>0>M_, i_>0>4i, (1D

for all T > 0. Comparison of (7) with corresponding classical 3D transient results (Brock,
1981) shows that all field variables except the temperature change w exhibit both rotational
waves (f-exponential terms) and signals (o, -exponential terms) that are not—because of
the dependence of the branch points 4, on the temporal transform parameter s—classical
waves.

Application of (6a, b) to (3) in view of (2) and (5) gives the equation set

"2.+(X+ _A_a__ 0 0 A+ iF*

2pa, pa_ =T, pq 'A_ _ i‘c;" (12)
2qu, 2q0_ pg —T, 5Bx i‘r;“
T T 208 24P B -

for (4., B) in the half-space z > 0. These functions, and, therefore, the expressions for the
solutions transforms (u*, o*, w*), will all exhibit in their denominators the determinant

R=(Ao), R_—(io)_R. (13)

of the coefficient matrix of (12), where

R, =47, f+ T (14)

Here, R is the thermoelastic Rayleigh function, and its zeroes are now studied.

RAYLEIGH SIGNAL: ANALYSIS OF ZEROES

Equation (13) shows that R is a function not of p, but of its scalar resultant r, and is,
therefore, identical in form to the corresponding 2D result (Brock, 1995), where the scalar
is then a specific transform variable (with respect to x, say). Indeed, the forms of R, are
similar in form to the classical Rayleigh function (Achenbach, 1973) in a 2D transient
study. The zeroes of R in the thermal 2D case produce pole-type singularities for (u*, 6*, w*)
in the complex plane of the spatial transform variable (Brock, 1992, 1993) which for positive
real s lie on the real axis. Because transform inversion involves integrations in the plane
that passes near the singularities as z — 0, residues and Cauchy principal value integral
contributions to the functions (u,s,®) themselves are produced, which may dominate
their surface behavior. Analogous considerations arise, of course, in classical 2D wave
propagation studies (Achenbach, 1973 ; Miklowitz, 1978 ; Brock, 1982b). While r is a scalar
resultant of two transform variables (p, g), we proceed by analogy with 2D studies and
seek the zeroes of R in the complex r-plane. The role of these zeroes in solution behavior is
illustrated in a later section.

The function R is analytic in the r-plane cut along Im(r) = 0, | Re(r) | > b_, and finite
in this cut plane for finite | 7 |. The argument principle (Hille, 1959) implies, therefore, that
the number of zeroes of R in the cut plane is equal to the net number of times that traversing
a simple contour about the entire cut plane produces a circuit of the origin in the {-plane
in the same sense under the mapping
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r-plane {-plane {-plane
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Fig. 1. (a) Contour for cut r-plane. (b) {-plane mapping for ¢ = b. (c) {-plane mapping for ¢ = b,.
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{ = R(). (15)

Such a contour is shown schematically in Fig. 1a, where it is understood that the circular
part has an infinite radius and that the curves surrounding the branch cuts Im(r) = 0,
| Re(r) | > b_ collapse onto those cuts. In view of (10), (11), (12) and (13) it can be shown
that R(0) and R(b_) are real and negative and that R(c) is a positive imaginary number,
where

¢ =max(b,b,). (16)
Moreover,
R~ +i2(h, —i_ )@ =bH)r, |r|—> (17)

where + denotes Im(r) < 0 and Im(r) > 0, respectively. This information can be used to
show that a mapping (15) of one circuit about the contour in Fig. 1a produces two circuits
about the contour shown schematically in Fig. 1b, ¢ for ¢ = b and ¢ = b, respectively. The
mapping in neither case completely circles the origin in the {-plane, so that R has no zeroes
in the cut r-plane. However, these same mappings indicate that R is imaginary in the infinite
intervals Im(r) = 0, | Re(r) | > ¢ and always changes sign as | # | — oo. Because it is an even
function, therefore, R exhibits two non-isolated zeroes of the form

r=tb, (18)
on its branch cuts. To obtain these, the function

R

G =
204, =A@ =) (r* =B/ —r?

is introduced, which is analytic in the plane cut along Im(r) = 0, 5_ < |Re(r) | < ¢, has no
zeroes in the cut plane, exhibits only an integrable singularity at the branch points r = +e,
and approaches unity as | 7| — co. It can, therefore, be written as the product of two
functions G, that are analytic in the overlapping half-planes Re(r) > —b_and Re(r) < b_,
respectively. These functions can be obtained by a product-splitting operation (Noble,
1958) as

(19)

1 (e _,Im(R) du
InG, = — L_ tan Re(R) utr (20)

where R(u) is evaluated along the upper side of the branch cut. More explicitly, we have
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1/ b . du
InG, = —— tan ' B,+| tan™'C|—— (c=0b) (21a)
- T\ J, 5, utr
G, = — [ tan B+ [ tan . )Y =b,) 21b)
n = T b_an o+b an “Jutr (e=b, (

where now

4P C_4u2ﬁ[(la)_—(la)+] C. - 4)_v*a, B
A_R,—i_T* T?(A,—1_) = AR —i.T?

A, = Ju*~b%, B=.u’—b. (22b)

Equations (21) show that G_(0) = G .(0), so that setting r = 0 in (19) gives

(22a)

o

—m_M_
M

b? 1 am, M,
c M,

V207 —a?) G+ 0)

The dependence of b, on the temporal transform variable s through the dimensionless
parameter 7 in b, is noted.

The role of this zero and the influence of thermoelastic Rayleigh signals on transient
surface response is, as noted above, considered later. At present, the zeroes arising in a
Stoneley signal problem are studied.

(23)

A STONELEY SIGNAL PROBLEM

Consider two half-spaces rigidly joined along an interface defined in terms of x as
z = 0. All parameters and field variables in the half-space z > 0 carry the subscript 1, while
those for z < 0 have the subscript 2. For time ¢ < 0 the half-spaces are at rest at a uniform
temperature T,(K). For t > 0 a temperature field is prescribed over the interface, as are
discontinuities in the displacement and traction fields. The governing equations for each
half-space are again (2) and (5), now appropriately subscripted, while for z =0, ¢ > 0 we
now have

Wl =U, [oKk]=(1,7,,0), @1 =w=0Q 24

where [ ] denotes a jump in a quantity in traveling from half-space z < 0 (2) to half-space
z >0 (1). Here (z,,7,,0), U= (U, ¥V, W) and Q are piecewise continuous functions of (p, t)
and bounded in p for finite r > 0. Therefore, (u;,u,, w,, w,) should also be bounded for
finite ¢ > 0 and continuous in (x, ¢) in their respective half-spaces. Use of (6) produces again
the formulas (7)—(11), with proper subscripting added. The transforms of the interface
conditions (24) then give the equation set

C, G[A]_
|:D1 Dz:l[Al]_[F] @

for the unknown functions (4, ., 4,4, B, B,) of (s,p). Here A, (i = 1,2) and F are column
matrices with elements (4,,,4,_,1/B; B, 1/8: B,) and (Q*, Q% sU*, sV* sW* t¥ 1}0%),
respectively, (C,,D,) are the square matrices
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Ay A 00 14 O 4 q
c =% 0 0 0y o2 2pGue) =T g
e o-p B0 O T | 29(uan), 2q(ues), mpg — (T,
-9 —q 0 B —@T), =@l —2ph) —2qup),
(26)
while (C,, D,) are the square matrices
0 0 0
c, = Ay Ao O 0 ’
p p —B 0
9 9 0 -5
®24 %z P 9
p, = | PUe)e 2o )y —(Wl):  popq | @n
2q(poc )y 2q(pa_);  papqg —(uT,),

uT), WD) 2puP)>  2q(uph),

One can introduce the parameters (Cagniard, 1962)

Ui 1 #a

=St —ay ©@=3Ta =505 Yi=abl, @ =o6b 28
2(puy — ) 272 TN T 2~ ) 1 101 2 203 (28)

(41

and obtain from the determinant of the square matrix in (25) the Stoneley function

S= *£1+/‘{,2+S, +Al+}.2_si +Al__/lg_+Si ‘11“},24S+. (29)
In (29)
S
‘—i_’_z = r(oy_Proy, Bo+ PRo)+ay B P40, B PT—Q,Qy (2 By, B1)
4(p — p2)
(30a)
P[ =Ql—r2, P2=Qz—r2, P12=Q[+Qz—‘r2 (30b)

and (S,,S_) follow by making both subscripts (+, —), respectively, while S; follows by
switching the (+, —)-subscripts. It should be noted that the subscripted S-functions all
have the same form as the Stoneley function for a 2D classical problem (Cagniard, 1962)
where, of course, 7 is then a single transform variable. In view of this, we adopt the viewpoint
used for the Rayleigh signal case and seek the zeroes of S in the complex r-plane.

From (8), (10), (11) and (30), it can be seen that S is analytic in the r-plane cut along
Im(r) =0, c_ < |Re(r)| < c., where

c. =min(b,_,b,_), ¢, =max(b,,b,.,b;,b,,). (€2))

To study the possible zeroes of S, the argument principle (Hille, 1959) is employed with
the mapping
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Fig. 2. (a) Contour for cut r-plane. (b) {-plane mapping.

=580 (32)

and the contour shown schematically in Fig. 2a. Despite the many magnitude-based order-
ings of (b,,b,4,b,,b,,) possible, it can be shown that

S

m & — (e —A ) (Aay — 42 )(4Q, —a? —bH([4Q, —ai b, |r| -
17 #2

(33

and that S(0) and S(c_) are real and positive. The quantity S(c,) is also real, but its
sign depends on the particular combination of parameters (b, b, ., 52,074,414, 454,Q1, Qo).
Therefore, in a manner analogous to that for the Rayleigh signal case, the mapping (32)
takes one trip about the contour in Fig. 2a into two circuits about the contour shown
schematically in Fig. 2b. The dashed lines indicate the two possibilities : if S(c.) < 0, the
mapping will circle the origin in the {-plane twice, while if S(c,) > 0, then circuits by the
inner and outer contours are in opposite directions. Because S is even in r and is, as (33)
shows, positive as | r | — oo, the two zeroes

r=+b, b,>c, (34)
occur in the cut plane when S(c,) < 0. To obtain these zeroes, the function

-S
G =
2(py = 1) (A =41 Yoy — 4, ) (4Q, —at —b)(4Q, — a3 —b3)(r* —b7)

(33)

is introduced. It is analytic, has no zeroes in the cut plane of S and approaches unity as
| r| = co. The same product-splitting operations used previously can be applied, therefore,
to find functions G, that are analytic in the overlapping half-planes Re(r) > —c_,
Re(r) < c_:

InG, = —

lfc+ tan—! Im(S) du (36)

Re(S) u+r’

c_

Here S(u) is evaluated along the upper side of the branch cut. Little insight is gained by
giving explicit forms for (36) for all possible orderings of (by, b, ., b,, b, ) but, as an example,
we present the results for the case b,_ < b,_ < b, < b, < by, < by, S(b,,) <0:
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1/ (b b, b, du
InG, = - tan"'B;+| tan~'C_+| tan™'D 5
b —

- by by
1/ (6= Lo (ST . du
— ;(Lz tan™' B, +L1+ tan™ C_ ;—"E (37

In (37) the inverse tangent arguments are ratios and the numerator/denominator pairs are

Ay Ay _[(Aay —124)(/311)%—919232)+uzB1ﬁz(Az+°‘zf —Aa_ty )],
Ml =20 PP+ (A 0n — A4 05 ) (B2 PT—Q, Q)] (38a)

Ay
+ (A, S5 — A, S8)
b —py)? T T

Ay da [A1_(B1P3—Q,Q,0,) + 4, (B, P —Q,Q,)]
+/11+;~2—A1—(ngzﬁz-/31P§‘U2ﬁ1°‘z+ﬁ2)+/11—'12+A2—(Q192ﬁ1—szf—uzﬁzawﬁl),
Fhrcdr (WP 40y, B PT—Q Qo 1)+ A1 Ary PP+ oty B PF—Q Qo 4 )

1
+/11+)v2+“2(A1—ﬁ1A2—ﬁ2—sz)"——-*2}“1—;12—51» (38b)
4y — )

MiyhriBr(Ay_Pi—tP A _BiA;_ —Q QA4 )+ A A Byt 0, Byt oy, P2 —Q,Qua,,)
F Ay ha (Aot 0oy B) =iy Ay (01, By PE+ A, B, PP,
Jishy WP+ A _BIPE—Q,QA4, B+ Ay (QQ,0,, B, —0,, B2 P —uPP3,)
+ Ay Ay [0y foPT—A,_B,P3+u*(P3,—A,_Ba,, )]
+ A1 Ay [Q1Q,(A4,_ B, — oy, Br) + P (P, —a, . B A, B))] (38¢)
AipAo 0o, (UA,_B By +Q,Q,B, —B,PY)+ A, _ Ay, 0, (B, 4,_B, +Q,Q,B, — B, P3)
+ A1 Ay [y, B\ P34y, BPT—Q,Q, (a4 By + 05, By,
Aiyho, (A, _BiAy_B,+P3)+A, B P +A, B,P2—Q,Q,(4,_B,+A,_B))]
A A (A4, _By+ PPl — A, _B P+, _A,,(Q,Q,4, B, —A,_B,P})
+ii_ Ay 1?0y, By, B, — P3y) (38d)
o0y Ay — 4 )(Q QB — B, P+ 1B By (A A — 4, _A4,.)],
Ayio [ (Ay_B,Ay_B,+P})+A,_B P2+ A4, B,P}—Q,Q,(4,_B,+A4,_B,)]
+ A Ay [W(A, By A By +P3)+Q,Q,(A,, B, +A,_B)—A,,B Pi—A4,_B,P}
+ iy Ay (P PL+Q A4, _By— A, _B PY)+A iy (PP, +A4, B P;—Q 04, B,)
(38¢)

for (B, ,C_,D,B},C.), respectively. In (38) the eqns (22b) hold, with the appropriate
subscripts attached. Setting r = 0 in (35) now gives

1
b, =
G.(0)
x\/ 2(Q,b,—Q,b,) l—Qzal(1+m1+m1—)_Qlaz(l+m2+m2~)] (39)
49, — & —b)[EQ, —at—b)| M +mi_ my+my_ |
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With these results available, we now examine the effects of thermoelastic Rayleigh/Stoneley
signals in terms of simple examples for the Rayleigh signal case.

RAYLEIGH SIGNAL ILLUSTRATION

We solve (12) in light of (13) for the coefficient (4, B) and substitute them into (7a)
in order to obtain the transform

F* * * ®
RO =— (R, =2 R)+i ) <T% —Zpﬁ% —2qﬁ%)(a, —%,) (40)

for the temperature change w, on the half-space surface z = 0. Now consider the specific
case of a half-space subject to a normal traction with uniform value o, distributed over a
surface disk of fixed radius p, centered at the origin. Then

c=0,(p<p), T=1,=F=0 (41)

where now p = ./x*+y*. Operating on (41) with (6) gives

2no,
o == 0di(srp). == F*=0 42)

where [, is the MacDonald function of order 1 (Watson, 1966). The inverse operation of
(6b) is (van der Pol and Bremmer, 1950)

N

fx) = (%> Hf *e'®? dpdg (43)

where integration in the complex (p,q)-planes can here be taken along the respective
imaginary axes. The exponential argument in (43) suggests the transform variable rotation
(Norwood, 1977)

pp=xptyg=Pp, yp—xq=0Qp, /P +Q = /p*+¢ =r (44)

with Jacobian of unity. Substitution of (40) into (43) in view of (44) under the assumption
that the resulting (P, Q)-integrations can also be taken along the respective imaginary axes
gives the single transform

. o, . D S
b, = —p, p g f dv mfe rR(oc_ —a M (sPp,)dP 45)

0

where P-integration is along the imaginary axis, o} has been recognized as an even function
of Q and the substitution Q = iv, v > 0 made. In (45), therefore,

r= /P’ -1’ (46)

and (a, ) can now be viewed as functions with positive real parts that are analytic in the
P-plane cut along Im(P) = 0, | Re(P) | > (\/ bi +07, \/ b? +v?), respectively. Similarly, the
function R can now be said to, in light of (23), exhibit zeroes on its branch cuts

Im(P) = 0, | Re(P) | > /b* +0° at
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P=+B, B,=./bl+0v. 47

A numerical inversion scheme could now be employed to obtain ,, but in the present
study, interest is on the contributions associated with the Rayleigh signals. To illustrate
their behavior, a long-time analytical solution is sufficient.

The Tauberian theorems imply that inverting an asymptotic expression for a unilateral
Laplace transform valid for small s will give a function valid for large ¢. Equation (8) shows
that the Rayleigh/Stoneley functions (13) and (29) depend on s through the dimensionless
parameters 7 and (1, 7;). In (8), however, the factor ak is quite small, e.g., O(10~"%) s for a
steel-like material (Brock, 1992), because the thermoelastic characteristic lengths 4 and
(hy, hy) are themselves small. Therefore, the use of small-t approximations in the solution
transforms may actually not place much of a restriction on the solutions themselves. Thus,

the asymptotic expressions
f1+e¢ 1
m,~ [—, m_.=~ (48)
* T J1+e

are introduced, and only the lowest-order terms in 7 and (7, 7,) kept. The result is that the
terms (R_, S_) effectively become the Rayleigh/Stoneley functions in (13) and (29). The
form of R_, in particular, agrees with the low-frequency function obtained by Chadwick
(1960) and Nowinski (1978). Then, (23) reduces to

b, = b 1 (49)
* 2 —a?) G+ (0)
where now
1 4u* A
lnGi=—;J tan“’Cuc}:r, Cc= ”Tz‘ﬂ, b_=\ﬂa_,. (50)
_ T +é
Although not of use here, for completeness we give the corresponding result
1 2(Q:6, = 5,) (5, . —Qy b, )
b, = (51)
G.OV (4Q, —a? —b})(4Q, —a} —b3)
for (39), where, for the case illustrated, (37) and (38) reduce to
1/ - » 5, » b, » du
InG, = —- tan™" C_+ tan= C+ | tan™ C, |—— (52)
+ T by by b, utr

and

Q,0,8,—B,P:—u? -
C_ =4, - 12 2B82— B 22 u' 0B (53a)
WPty +o, B, Pi—Q 0, B,

_ Q,Q,(A,_pr+A;,_p)—A4,_pPi—A,_B,P3
uz(P%z—Al—ﬂ1A2~ﬁ2)
WA, B, A, +Q,Q,4, —A, P

C, = 53¢
=P WP, +Q,Q,4, B,—A,_B,P;3 (53¢)

C

(53b)

under the restriction
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V0 =B/ b5 — b3 — (Q —b3)P /b — b 1+ b3(Q +Q, - b3)* < 0. (54)

Returning now to the contribution of the Rayleigh signal, we proceed by analogy with
classical 2D studies (Achenbach, 1973 ; Miklowitz, 1978) and recognize that (47) defines
poles for the integrand of (45). Therefore, the non-exponential part of this integrand is
replaced by an expression valid near P = + B, (r = +5,). In particular, the function R can
be approximated by the form

24, —A_ )@ —b*) /)t =b2G, (b,)G_(b,)(P* —B2) (55)

obtained from (19), where it is noted that the long-time expressions (50) for G, are analytic
at P = + B, because it can be shown that now b, > b. Use of (48) gives the forms

1 2 2 1
e (7}) B, a_=tid, A_w bz—ﬁ;), zjhi (56)

for (45), where the (+)-sign arises in the second and fourth quadrants of the P-plane, and
the (—)-sign, in the other two quadrants. In view of Cauchy residue theory, the P-inte-
gration in (45) can then be replaced by an integration along the upper and lower sides of
the negative Re(P)-axis in opposite directions. The result is that (45) takes the approximate
form

Ao bzpall (Sbopo)T(bo) iﬁ
(M, M) (@ -b)G,(b,)G (b)), b, KT K
d 1 o du o
= —sup _ T a—sBp
<Joele et ) 7

where (8d) has been used and u now plays the role of P. Equations (8), (48) and (56)
indicate that the second term in (57) dominates as s — 0 and, indeed, behaves as

e B, (sh,p,), $=0. (58)
The inverse of (58) is (Abramowitz and Stegun, 1972)

B,p—t 1

obo /bip;—(1=B,p)?

so that, upon making the integration variable change v = \/u>—b2,u > b, in (57), we
obtain

(Bop > bop, > | t—B,p|) (59)

e o, b T(,) J“+ t—up du
W, X (u, >u_)
L+emur g2 — b2 202G, (b,)G_(b,) Ju_ \/B2pE —(t—up)® \/u> — b
(60a)
t+b b t—b,p,
u, = F0ePo max(ba, ”p",—i>. (60b)
p p p

The integral in (60a) can be replaced by a combination of elliptic integrals of the first and
third kinds (Gradshteyn and Ryzhik, 1975). Their moduli and arguments depend on u_,
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however, and as the classical results of Brock (1980) for pressure loading over a non-
uniformly expanding surface area show, the present form is actually more efficient for
calculations.

This problem displays axial symmetry, so, as truer 3D examples, consider normal
surface tractions imposed over the same surface disk of radius p, in such a manner that the
net normal forces vanish, i.e., surface bending couples are the resultant:

o =0,(cosb,sinfd) (p <p,), T,=1,=F=0. (61)
Here, tan # = y/x and operation on (61) with (6a, b) gives

g, 1,(srp,)
o* = —p? oy (P,0) I:I,,(srpo) - ’ST} r=*=F*=0 (62)

where 1, is the MacDonald function of order 0 (Watson, 1966). Carrying out the same
inversion procedure then gives

- (e >u_).

e a, b* T(b,)(cosB,sinb) J"+ (t—up)? udu
B —(t—up)® Ju' =B}

W, X —
L+empux p2 — g2 263G (b,)G _ (bo)p .
(63)

Equation (63) preserves in o, the 8-dependence of the imposed normal traction.

SOME NUMERICAL RESULTS

Equations (49) and (51) indicate that, for long times, the Rayleigh/Stoneley zeroes b,
are constants. That is, their inverses are the Rayleigh/Stoneley signal speeds, vz and v,
respectively. Their values are essentially the classical values, modified by the thermoelastic
factors \/1+¢ and (\/1+¢,,./1+¢,). Table 1 presents values of v, for three materials,
and Table 2 presents values of vg for those combinations of the materials for which v exists.

To illustrate the surface temperature change induced for long times by the Rayleigh
signal, w, given by (60) and the amplitude | w,| obtained from (63) are plotted in Figs 3

Table 1.
v p (kg/m®) # (GPa) 3 g (m/s)
aluminum 0.33 2768 259 0.036 2857
stals stl. 0.3 7778 73.1 0.0071 2842
titanium 0.34 4512 414 0.009 2826
Table 2.
v, (m/s) Vg2 (M/S) vs (m/s)
aluminum (1) 2857 2842 3026
stnls stl. (2)
aluminum (1) 2857 2826 3027

titanium (2)




1476 L. M. Brock

03 I I 1 T T T

Vit
Po

Fig. 3. Surface temperature change w, for uniform compressive surface stress.

and 4, respectively, vs the dimensionless time parameter v,t/p, for various values of the
dimensionless distance parameter p/p,. The half-space is a steel with loading and material
properties given by

1
K= —71(107%) 2. h=82(10") um, —*=-001 (64)

o
U
and Table 1. The mild requirements that (v,t/h, p,/h) > 1 should guarantee that the long-
time restriction is met. The magnitude of the loading given by (64) is roughly one-half of
the simple-tension test value for yield. The sign produces a compressive stress for the
uniform loading case. The peaks seen in both Figs 3 and 4 for p < p, occur near ¢ = 2b,0,,
i.e., twice the travel time of a Rayleigh signal from the loading disk center to the point of
interest or the signal travel time between two points equidistant from the disk center and
diametrically opposite. This phenomenon of distinctive solution behavior at Rayleigh signal
travel times is similar to that noted at the outset for dynamic fracture analysis.

It is also noted that the uniform loading case (Fig. 3) produces much smaller changes
in surface temperature than those found for the zero-force case (Fig. 4), but that a strong
decay with distance p from the disk center occurs for the latter. Another noticeable difference
is that w, dies out rapidly with time in Fig. 3, while | w,| in Fig. 4 achieves steady-state
values that vary inversely with distance. The maximum temperature change values—which
occur in Fig. 4—are not critical, but are not negligible, either. Because no heat flux has
been imposed on the surface in these examples, such values show that Rayleigh signal-
induced changes in surface temperature can be an important effect.

SOME REMARKS

This article considered Rayleigh (surface) and Stoneley (interface) signals in transient
3D analyses of fully-coupled thermoelastic half-spaces under both mechanical and thermal
loading. The first task in the study was to obtain exact expressions for the zeroes of the
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Fig. 4. Surface temperature change amplitude | w,| for zero-force surface stress.

Rayleigh/Stoneley functions that arise in the integral transforms of the corresponding
problem solutions. These zeroes could be viewed as occurring in complex plane whose
points are defined by a scalar resultant of two spatial transform variables, and the zeroes
themselves depended on the temporal transform variable. Then, as illustrations of signal
effects, the surface temperature changes associated with the Rayleigh signals generated by
two types of normal stress surface loading were obtained by inverting for long times integral
transform expressions that were valid near the Rayleigh zero locations.

The so-called long-time solution forms involved Rayleigh function zeroes that reduce
to constants and, therefore, represent the inverses of classical Rayleigh wave speeds whose
values are modified by thermal coupling. This behavior is consistent with that predicted by
2D results for a low-frequency time-harmonic form for a thermoelastic Rayleigh signal.
For completeness, the corresponding long-time Stoneley signal zeroes were also given, and
- found to be thermally-modified inverses of classical Stoneley wave speeds. Despite such
simplicity, the long-time results were robust, because time was scaled by a small thermo-
elastic characteristic length.

Calculations showed that, depending on the loading form, the Rayleigh signal can
induce surface temperature changes that, instead of decaying with time, reach steady-state
values. Moreover, the values achieved were not negligible, e.g., O(10) K. Because no heat
was imposed as part of the loading, these illustrations indicate that Rayleigh/Stoneley
signals may well produce effects that are important in characterizing transient thermoelastic
surface response.

This basic study did not address the related problem of pseudo-Rayleigh signals,
e.g., (Brock, 1978), nor the question of precisely what types of thermal surface/interface
conditions imposed will in fact produce Rayleigh/interface signals. However, as with the
corresponding 2D results (Brock, 1995), it is hoped that this study will allow insight into
transient surface/interface signal effects in thermoelastic materials. In particular, these
results were obtained by treating complete problems of prescribed mechanical and thermal
loadings, and the key Rayleigh/Stoneley function product-splitting operations would arise
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in the solution of mixed boundary value problems by a Wiener-Hopf technique (Achenbach,
1973 ; Freund, 1990 ; Noble, 1958).
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